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ABSTRACT OBJECTS AS ABSTRACT DATA TYPES REVISITED

by Alexander Ollongren

Department of Mathematics and Computer Science
Leiden University

PREFACE

The present paper is a revision of an article written by H. Gerstmann and the
author and published in the Proceedings of the 1979 Copenhagen Winter School
'Abstract Software Specifications’, Springer Lecture Notes in Computer Science No.
86. The main part of the paper is taken verbatim from the mentioned article
(permission from the publisher has been requested); the last section is written anew.

I am happy that the compilers of the Liber Amicorum dedicated to Jaco de
Bakker have decided to include the present paper, because it gives me the
opportunity to discuss, albeit briefly, an issue which was considered in the seventies
important in the field of the semantics of programming languages. The question
which raised much attention at the time was whether the semantics should be defined
in an operational manner or by different means. In the view of the school based in
Vienna to which P. Lucas, K. Walk and many others belonged, the issue could be
settled by defining a suitable formal universal interpreter. At the time 1 was much
attracted to the idea and tried to contribute to it by formalizing the underlying so-
called objects.

The interpreter was to be universal in the sense that it could give an
interpretation to any program in any high-level programming language of the
procedural type. In modern terminology the set of objects served as the basic data
type of the interpreter. PL/I was given a semantics in this way [1], and in the
seventies the Vienna group showed the usefulness of the method by formally
defining a number of semantics and semantic concepts.

There was a rivalling school of thought, the Oxford school, led by ideas of
Chr. Strachey, which set the scene for what is now called the denotational semantics
of programming languages. When I first met Jaco de Bakker it was by no means clear
which school would emerge as the most promising and 1 remember him saying that
the future would tell. (In hindsight it is clear that both approaches were promising:
the denotational method is well-founded and widely used today, the original idea of
the universal interpreter defined in the Vienna Definition Language (VDL) led to the
establishment of the Vienna Development Method (VDM), equally well-known).
Since then Jaco wrote the magnificent volume on the semantics of programming
languages [10], which is based on yet another concept: the set-theoretic approach.

By the end of the seventies the operational method of the Vienna school was
under criticism from theoreticians who considered the basic objects in VDL ’not
really abstract’. This was clearly an open invitation for one to try to counter the
point and I presented at the mentioned Winter School an axiomatic treatment of the
same - what could be more abstract? H. Gerstmann gave a lecture too, presenting an
algebraic treatment. At the meeting we decided to cooperate and contribute to the
proceedings with just one paper: the main sections are reproduced here. The last
section is revised because I wish to connect with modern developments in VDM.

Finally I must remark here that B. Nordstrém [t1] a few years later gave yet
another foundation of the abstract objects in the regime of constructive mathematics,
thus definitely settling the account in favor of the abstract nature of the datatype
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and so of the universal interpreter. The complexity of the device, however, remains a
drawback as far as application is concerned.

INTRODUCTION

In the Vienna Definition Language (VDL) [1,2,3] ‘abstract objects’ are
provided to describe the state space of symbolic machines as well as the phrase
structure of programs. Since the language is used as a meta language to define the
operational semantics of programming languages, some authors [4] refuse to consider
abstract objects as being abstract. However, whether semantics are denotational or
operational is just a matter of the mapping from the syntactic to the semantic
domain, and not of the meta language in which the mapping is described.

As a matter of fact, the authentic reference [l] makes a clear distinction
between abstract objects and their representations, and in a paper by H. ZEMANEK
[5] isomorphic representations are discussed. In pursuit of this design philosophy P.
LUCAS introduced the notion of a 'software device’, which seems to be the earliest
instance of an abstract data type. His paper presented at the Second Courant
Computer Symposium in 1970 [6] contains an equational presentation of a stack and
an implementation for it.

The purpose of the present paper is to show that abstract objects are indeed
abstract data types in the strict algebraic form of [4]. To reveal the structural
properties of the data type Abstract Object, it is derived from the data type Set in a
sequence of refinements by means of enrichment and functors [7] This way of
proceeding does not only yield the original VDL objects, but also its advanced
descendants in form of new objects [8]. The paper concludes with an outline of how
this abstract data type can be used as model for parts of META 1V, the meta
language in the Vienna Development Method (VDM) [9].

ALGEBRAIC PROVISIONS

A specification of an abstract data type consists of a set of sorts S, a Set of
operation symbols I, and a set of equations E between the operation symbols. A -
algebra contains for each sort S a carrier

As

and for each operator symbol of type
sls2 ...sn — s

a function
oA :Asl x AsZ X .o X Asn - AS

The class of all S-algebras together with their homomorphisms can be regarded
as a category. In this category the word algebra T(Z) of well-formed terms built up
from the operator symbols is initial, whereas in the subcategory of Z-algebras that
satisly the set of equations this property is taken over by the quotient algebra T(ZE)
with respect to the congruence relation generated by E.

The class of all initial algebras in the subcategory defines the abstract data type
of the given specification. Within this class the subclass of all word algebras, with
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T(XE) as its representative, yields the abstract syntax, and any other initial algebra is
a mode! of the data type.

During stepwise specification by enrichment, new operation symbols on the
given sorts and equations between them are added to the specification of the data
type such that existing congruence classes are maintained. If new sorts are required
too, a functor can be defined between the respective categories which assures that
each model of the extended specification is also a model of the original one.

STEPWISE SPECIFICATION OF DATA TYPE ABSTRACT OBJECT

Starting from a specification of Set the data type Abstract Object is developed
in a chain of refinements. The reader is assumed to have a model of Set at his
disposal which enables him to verify the following equational presentation:

Data type: Set
Sorts: el, set, bool

Operation Symbols

insert: el set — set

delete: el set — set
has: el set — bool

[} — set
Equations
insert (e,insert(e,s)) = insert(e,s)
insert(el,insert(e2,s)) = insert(e2,insert(el,s)) el#e2
delete(e,delete(e,s)) = delete(e,s)
delete(el,delete(e2,s)) = delete(e2,delete(el,s)) el#e2
insert(e,delete(e,s)) = insert(e,s)
delete(e,insert(e,s)) = delete (e,s)
insert(el,delete(e2,s)) = delete(e2,insert(el,s)) el+e2
delete(e,d,) = g
has(e,insert(e,s)) = true
has(e,delete(e,s)) = false
has(e!,insert(e2,s)) = has(el,s) elze2
has(e!,delete(e2,s)) = has(el,s) el#e2

The first step of refinement introduces assumptions about the elements. Each
element is again a set, prefixed by a name to identify it.

el = name set.

However, elements are not just considered Cartesian products, which would
leave the axioms essentially unchanged. Since the first component is to act as a name,
the occurrence of equal names requires special treatment. In this case the second
component is overwritten by the insert and forgotten by the delete operation. This
yields the

Data Type: Set of named Sets
Sorts: name, set, bool

Operations
insert: name set set — set
delete: name set set — set
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has: name set set — bool

[ — set
Equations
insert (n,sl,insert(n,s2,s)) = insert(n,sl,s)
insert (nl,sl,insert(n2,s2,s)) = insert(n2,s2,insert(nl,sl,s)) nl#n2
delete(n,sl,delete(n,s2,s)) = delete(n,sl,s)
delete(nl,s1,delete(n2,s2,s)) = delete(n2,s2,delete(nl,sl,s)) nl#n2
insert(n,s!,delete(n,s2,s)) = insert(n,si,s)
delete(n,sl,insert(n,s2,s)) = delete(n,sl,s)
insert(nl,sl,delete(n2,s2,s)) = delete(n2,s2,insert(nl,sl,s)) ni#n2
delete(n,s, &) = g
has(n,sl,insert(n,sl,s)) = true
has(n,s1,delete(n,s!,s)) = false
has(n},s!,insert(n2,s2,s)) = has(nl,sl,s) nl#n2
has(nl,sl,delete(n2,s2,s)) = has(nl,sl,s) nl#n2

In order to show that the refined version is still a model of Set, a functor
F: Set of named Sets — Set

is introduced by the mappings

F(name set) = name
F(set) = set
F(bool) = bool

for objects and

F(insert(n,s!,s)) = insert(n,s)
F(delete(n,sl,s)) = delete(n,s)
F(has(n,sl,s)) = has(n,s)

F( 2) = o]

for operations. With its help the original equations can be recovered from the refined
ones, for instance

insert(n,s!,insert(n,s2,s)) = insert(n,sl,s)

insert(n,insert(n,s)) = insert(n,s)

or

(n1#n2) =
insert(nl,sl,insert(n2,s2,s)) = insert(n2,s2,insert(nl si,s))

(nl#n2) =
insert(nl,insert(n2,s))= insert(n2,insert(nl,s))

An inspection of the axioms discloses a striking symmetry between the
operations of insertion and deletion. This property suggests the definition of one
operation in terms of the other. Since, due to the inductive definition of set, the
empty set can be used in an element, it is not wrong to try

delete(n,sl,s) = insert(n,d,s).
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It is easy to see that with this definition the axioms containing delete become
special cases of the other ones and can be removed. The remaining equations are:

insert(n,sl,insert(n,s2,s)) = insert(n,s!,s)
insert(n{,sl,insert(n2,s2,s)) = insert(n2,s2,insert(nl,sl,s)) nl#n2
insert(n,?,d) = @

has(n,s,insert(n,sl,s)) = true

has(n,s1,insert(n,d,s)) = false

has(nl,sl,insert(n2,s2,s)) = has(nl,sl,s) ni#n2

To obtain abstract objects, the derived operation

select: name set — set

defined by
select(n,s) = sl if has(n,sl,s) = true
@ otherwise
is introduced instead of has. Substitution into the equations for has yields the
corresponding equations for select
select(n,insert(n,s1,s)) = sl
select(nl,insert(n2,52)) = select(nl,s) nl#n2.

The final step includes a transition to the more familiar notation

name «— sel(ector)

set — obj(ect)
empty set (&) «— null object (1)
insert(x,y,y’) —  mk(y’,x,y)
select(x,y) — sl(x,y)

and the specification of a basis from which the objects are constructed. Within sort
obj a set of generators el, called elementary objects, is assumed, which, combined
with selectors, yield objects. Additional axioms extend the operations to elementary
objects. The result of all these measures is the

Data Type: Abstract Object
Sorts: obj, sel

Operation Symbols

mk : obj sel obj —  obj

st sel obj —  obj
: — obj

Equations:

mk(mk(o,s,01),s,02) = mk(0,5,02) sort (o)#el v ol#0Q
mk(mk(e,s,ol),s,0) N sort(e) = el
mk(mk(o,s1,01),s2,02) mk(mk(o0,52,02),s1,01) sl#s2
mk(£2,s,02) 0

mk(e,s,) e sort(e)=el
si(s,mk(o0,s,01)) ol

sl(s!,mk(0,s2,02)) = sl(s!,0) sl#s2
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Actually this is not the specification of a data type but of a class of data types. The
presentation contains the two basis types sel and el which still must be specified to
obtain a specific data type within the class. Any data object within the class is called
a new object in reference [8].

The original VDL objects [1] appear as a special case in which sel is specified
as a monoid and el as a set of atoms. Monoid multiplication is identified with
functional composition so that the additional axioms

sl(s1*s2,0)
mk(o,51*s2,01)

si(s1,sl(s2,0))
mk(o0,s2,mk(sl(s2,0),s1,01))

hold. The consequences of these additional axioms will be discussed after a model for
abstract objects is available in the next section.

STANDARD MODEL FOR ABSTRACT OBJECTS

To show the consistency of the final equations, a model! is presented. The
model is based on the assumptions that models for the basis types have already been
given and therefore applies to any data type within the class of abstract objects. For
this reason it is called standard model.

Before the model can be defined the syntax must be specified. The syntax of
the abstract data type is defined by the word algebra T with

Carriers: Tobj s Tgel

Operations

mkp : Top; XTgep X Top; ~ Topj
sl : Tser % Tob; = Top;
QT : — TObj

A term t in Tobj is generated from the basis terms T, and T, by means of the
productions:

t—10je eeT

el,SET

sel» £ € Top;

3
t « si(s,t) | mk(t,s,t)
The terms t are considered as words ’t’ on which the operations are defined by

mk('t','s’,'tZ’)
51('5',‘t,)

'mk(tl,s,t2)
*sl(s,t)’.

The axioms induce a partition of the set of words into disjoint classes of equivalent
words. For each class there is a unique representative: s/ can be eliminated from a
term applying the axioms for this function. Any nested mk-term can be reduced by
the other axioms to an equivalent one in which all s are distinct and obey a certain
order. Thus any class can either be represented by ’(1’, 'e’, or by a word of the form

'mk(mk(mk(to,sl,tl), . Sn_l,tn_l),sn,tn)'
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in which tg is an elementary or null object, any other t again a term of the same
kind, and

s; # sy for i#k.

The specification of abstract objects in a chain of refinements starting from
Set indicates that there must exist a set theoretic model. Instead of pairs, however,
the notion of mappings as provided in META IV [9] is used because the associated
operations are moreadequate for the present purpose.

The model is an algebra

0= (oobj’ osel; mko, s[o, no)
with

Carriers: oobj’ osel
and

Operations

mKg : Ogp; % Osep X Ogpj — 0 gb;
S[O : Osel X Oobj — 0 Obj
ﬂol - 0 Obj

Objects are mappings in the domain

oobj =n(losel - (ogen IOobj))

with Osel and oel assumed to be specified and the generic set is

ogen = Oy Y {1}

Partial mappings
[s — o(s) | s € Sel] Sel C Ogq
are completed by the convention
[s — if s € Sel then ofs) else [ 1] s € Ogy] .

[ ] denotes the empty mapping, which is also used to represent no. The other
operations are defined by the expressions

mko(o,s,ol) = (0 € Oel Aol=[]—o0,
0 € Og a0l # []— [s—ol],
0 & Og =0+ [s—ol))
slg(s,0) = (0 € 0y — [ ],

o¢ Oel — ofs)).
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Since for the basis types the existence of models is assumed, there is already an
isomorphism between them and the respective terms in T:

h(’e’) = e e eT

el © € Ogy

h(’s’) = s 'S" € Tgap § € Ogg
Next the nulfary operations must be associated
) =11

This partial mapping can now be uniquely extended to the classes of equivalent
words in T: For each representative

’mk(mk(... mk(to,sl,tl), ..o Sn_l,tn_l), Sn,tn),
of a class its image is defined recursively by
h(Cmk(t4.s.tg)) = h('ty") U [h(’s’) — h(tg")].

It is not difficult to show that the axioms are satisfied by the model, for
instance

sl(s,mk(o,s,01)) ol for o0

el

slo(s,mko(o,s,o 1) slo(s,o + [s—ol])

(o + [s—ol])s) = ol.

To show the initiality of T, let
A= (Aobj' Agel » M, S, 0)

be any algebra in the subcategory of algebras satisfying the axioms and
uwd— A

uniquely defined by

u(e) =a eE Oel’ a€ Ay
u(s) =r S € 05, T € Aggy
u[( D=0

u([si—oi |si € Sel]) = M(u([si — oi | si € Sel\(sk}]),u(sk),u(ok)).
Again the conditions for a homomorphism are only proved for a typical case. For
si € Sel
u(S(si,[sj—oj | sj € Sel])) = u(oi) = (by the first axiom for s/)
S(u(si),M(u([sj—oj | sj € Sel\{si}]),u(si,u(oi))) =

S(u(si),u([si—oj | sj € Sel])
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u(M([sj—oj | s € Sel]si,0") =

u([sj—oj | sj € Sel\{si)] U [si—0]) =

M(u([sj—o0j |sj € Sel\{si})]), u(si,u(0’)) = (by the first axiom for mk)
M(M(u([sj—oj | sj € Sel\(si}),u(si),u(0i)),u(si),u(0")) =
M(u(sj—oj | sj € Sel]),u(si),u(0")).

To obtain VDL objects within the standard model osel must be specified as monoid
and the equations

0+ [s1*s2 — 012] = o+ [s2 — o(s2) + [s] — 0lI2]]
o(s1*s2) = o(s2)(sl)

added. For the null object the first equation becomes
[s1*s2—012] = [s2— [s] —012]]

so that in any object with components
[sI—ol], [s2—02], and [sI*s2—012]

the identity
02 = [sl—012]

holds. If the equations are dropped new objects over a selector monoid are created in
which the objects o1, 02, and 012 can be chosen arbitrarily.

On the other hand, paths through an object can be equated by imposing
additional axioms on the monoid. Let

Ogep = ({0,1%; *)
be a monoid with two selectors satisfying the axiom
1igk - okyi

In this case a two dimensional array A is obtained, Ln which an element A(i,k) can
be retrieved along any path equivalent to the path 1'0¥,

SOME FURTHER REMARKS

In the previous section de VDM meta language META IV (cf. the introduction) is
briefly used to represent abstract objects as mappings. In the present section the
attention is directed to the problem of providing interpretations for some parts of the
meta language in the abstract data type developed.

To start with the set of elementary objects obviously can be represented by the basis
of the data type, i.e. generators of the sort el. Further classes of trees are interpreted
as classes of new objects (multi-level arrays) with some appropriate set of selectors,
i.e. the sort sel. This allows an interpretation of an expression in the abstract syntax
like
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A zsl: Bl s2:B2..sn:Bn n >0
as the class of multi-level arrays characterized by
a € A & sl(si,a) € Bi i=1,2, ... ,n.

The symbol :: can be read as 'is composed of* ([12]), p. 122). An axiomatic treatment
of (generalized) multi-level arrays is to be found in [I3].

Elements of the class can be created under the META IV conventions by so-called

make-functions. Let Bi (i = 1,2, ...,n) be given sets, possibly of trees. Then the
function mk-A of type

mk-A : Bl x B2 x ... xBn— A
evaluates (for a given sequence of selectors sI, s2, ..., sn) to an element for which the
following property holds:

sl(si,mk-A (bl, ..., bn)) = bi i=1,2 .. n

This property is the same one as the characterizing property of the expression we
started out with. META 1V allows to write instead of the last equality:

si(mk-A(bl, ... ,bn)) = bi

so that the selector si takes the role of a function of type A — Bi
(i=1,2,...,n).

Within the abstract data type the make-functions admit the following interpretation:
mk-A (bl,...,bn)=a & a€Aaras=
mk™("0,51,b1),52,b2),...)sn,bn)

with
mk"(Mo,51,b1),52,b2)...),sn,bn) =

mk™ 1™ I mk(o,s1,b1),52,b2),...),sn,bn)

and
mk%o,) =0 .
From this we see that mk-A can be expressed as a lambda form:
mk-A = A (bl,b2,....bn). mk"("Q ,s1,b1),s2,b2),...),sn,bn) .

As before the sequence of selectors sl,...,sn is supposed to be given.
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